On Second-order Nonlinearities of Some D0 Type Bent Functions
نویسندگان
چکیده
In this paper we study the lower bounds of second-order nonlinearities of bent functions constructed by modifying certain cubic Maiorana-McFarland type bent functions.
منابع مشابه
On lower bounds of second-order nonlinearities of cubic bent functions constructed by concatenating Gold functions
In this paper we consider cubic bent functions obtained by Leander and McGuire (J. Comb. Th. Series A, 116 (2009) 960-970) which are concatenations of quadratic Gold functions. A lower bound of second-order nonlinearities of these functions is obtained. This bound is compared with the lower bounds of second-order nonlinearities obtained for functions belonging to some other classes of functions...
متن کاملOn second-order nonlinearity and maximum algebraic immunity of some bent functions in PS+
In this paper, by modifying a subclass of bent functions in PS ap, we construct another subclass of bent functions in PS + with maximum algebraic degree. We demonstrate that the algebraic immunity of the constructed functions is maximum. The result is proved by using the well known conjecture proposed by Tu and Deng (Des. Codes Cryptogr. 60(1), pp. 1-14, 2011) which has been proved recently by ...
متن کاملOn the lower bounds of the second order nonlinearities of some Boolean functions
The r-th order nonlinearity of a Boolean function is an important cryptographic criterion in analyzing the security of stream as well as block ciphers. It is also important in coding theory as it is related to the covering radius of the Reed-Muller code R(r, n). In this paper we deduce the lower bounds of the second order nonlinearity of the following two types of Boolean functions: 1. fλ(x) = ...
متن کاملOn lower bounds on second-order nonliearities of bent functions obtained by using Niho power functions
In this paper we find a lower bound of the second-order nonlinearities of Boolean bent functions of the form f(x) = Tr 1 (α1x d1 + α2x 2), where d1 and d2 are Niho exponents. A lower bound of the second-order nonlinearities of these Boolean functions can also be obtained by using a result proved by Li, Hu and Gao (eprint.iacr.org/2010 /009.pdf). It is demonstrated that for large values of n the...
متن کاملAn Analysis of the 풞 Class of Bent Functions
Two (so-called C,D) classes of permutation-based bent Boolean functions were introduced by Carlet two decades ago, but without specifying some explicit construction methods for their construction (apart from the subclass D0). In this article, we look in more detail at the C class, and derive some existence and nonexistence results concerning the bent functions in the C class for many of the kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010